Regularity properties of the degenerate Monge–Ampère equations on compact Kähler manifolds

نویسنده

  • Mihai PĂUN
چکیده

We recall that according to [3], a function φ : X → [−∞,∞) is called quasiplurisubharmonic (quasi-psh for short) if it is locally equal to the sum of a smooth function and a plurisubharmonic (psh) function. Then there exist a constant C ∈ R such that √ −1∂∂φ ≥ −Cω in the sense of currents on X . We say that a function ψ has logarithmic poles if for each open set U ⊂ X there exist a family of holomorphic functions (f j ) such that ψ ≡ ∑ j |fU j |2 modulo C(U); it is an important class of quasi-psh functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The General Definition of the Complex Monge-Ampère Operator on Compact Kähler Manifolds

We introduce a wide subclass F(X,ω) of quasi-plurisubharmonic functions in a compact Kähler manifold, on which the complex Monge-Ampère operator is well-defined and the convergence theorem is valid. We also prove that F(X,ω) is a convex cone and includes all quasi-plurisubharmonic functions which are in the Cegrell class.

متن کامل

Continuity of the Complex Monge-Ampère Operator on Compact Kähler Manifolds

We prove several approximation theorems of the complex Monge-Ampère operator on a compact Kähler manifold. As an application we give a simple proof of a recent result of Guedj and Zeriahi on a complete description of the range of the complex Monge-Ampère operator in E(X,ω), which is the class of ω-plurisubharmonic functions with vanishing complex Monge-Ampère mass on all pluripolar sets. We als...

متن کامل

The Dirichlet Problem for Complex Monge-ampère Equations and Regularity of the Pluri-complex Green Function

(1.1) det(uzj z̄k) = ψ(z, u,∇u) in Ω, u = φ on ∂Ω and related questions. When Ω is a strongly pseudoconvex domain, this problem has received extensive study. In [4]-[6], E. Bedford and B. A. Taylor established the existence, uniqueness and global Lipschitz regularity of generalized pluri-subharmonic solutions. S.-Y. Cheng and S.-T. Yau [8], in their work on complete Kähler-Einstein metrics on no...

متن کامل

On Degenerate Monge-Ampère Equations over Closed Kähler Manifolds

Monge-Ampère equation has been a classic problem in analysis for a long time. Its complex version, complex Monge-Ampère equation, has drawn a lot of intentions from an even wider group of mathematicians since the breakthrough work of S. -T. Yau almost thirty years ago. The solvability of this equation over a closed manifold for a Kähler class, which was proved in [Ya], allows a lot of applicati...

متن کامل

Regularity of Subelliptic Monge-ampère Equations in the Plane

We establish a C∞ regularity result for C1,1 solutions of degenerate Monge-Ampère equation in R2, under the assumption that the trace of the Hessian is bounded from below.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006